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Abstract

We present a garbage collector that is specifically designed
for a WebAssembly-based blockchain, such as the Internet
Computer. Applications on the blockchain implement smart
contracts that may have indefinitely long lifetime and may
hold substantial monetary value. This imposes a different
set of requirements for garbage collection compared to tra-
ditional platforms. In this paper, we explain the differences
and show how our garbage collector optimizes towards these
goals.
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1 Introduction

There is a recent trend towards compute blockchains that
enable fully decentralized applications [2]. Such blockchains
implement a virtual machine that run programs by secure dis-
tribution across untrusted computer nodes. This is achieved
by replicating the program memory and execution and apply-
ing Byzantine fault-tolerant consensus on the computation
[7].

To ease the consensus, program execution is typically rep-
resented as transactions that run a sequence of operations
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in a deterministic, isolated, and atomic way. Transactions
have access to the program memory that is persisted on
the blockchain and that they can read and modify. The fi-
nal memory state of a transaction thereby serves as initial
memory state for a subsequent program transaction.

In contrast to traditional applications, blockchain pro-
grams often implement smart contracts that hold monetary
value and therefore require a particularly high assurance and
reliability. They also tend to have much longer lifetime, with
some applications staying on the blockchain indefinitely and
continuously executing transactions. These concerns favor
high-level programming languages that prioritize safety, by
offering for example automatic memory management.

Memory reclamation is an important aspect on a blockchain
as it allows recycling space in the program’s memory, such
that a transaction does not always need to grow the size
of its memory for new allocations. Although a blockchain
may store a history of memory images of previous trans-
actions, garbage collection helps to reduce the program’s
latest heap and memory image. Modern blockchains can even
securely truncate state history, such that old transactional
memory snapshots including the state of garbage objects are
discarded after some time [2]. That allows programs to have
large memory in the order of gigabytes.

In contrast to classical garbage collection, a blockchain
imposes stricter requirements on memory management:

e Fragmentation: Since an application can live perpet-
ually on a blockchain, GC should avoid heap fragmen-
tation. Simply restarting an application may not be an
option.

e Incrementality: As each transaction on a blockchain
needs to complete in a limited amount of time, a GC
has to bound all of its pauses.

Many blockchains choose WebAssembly (Wasm) [14] as
their virtual machine because it is open, formally specified,
efficient, and secure. Moreover, Wasm is easily made deter-
ministic and is targeted by a wide range of programming
languages. However, currently, Wasm does not incorporate
a garbage collector but only exposes linear memory. There
is an upcoming Wasm GC proposal [15] to introduce host
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garbage collection. It is not clear that blockchains can lever-
age this proposal: Blockchain nodes would need to reach
consensus on the implementation specific, native state of
the host GC rather than just the concrete Wasm state. It is
also unlikely that any off-the-shelf Wasm engine will expose
the private state of its GC to clients. Even if it did, the host’s
GC may still not meet our fragmentation and incrementality
requirements.

Another approach is to reuse the existing GC of a managed
language that compiles to Wasm. As the GCs of mainstream
languages are typically designed for traditional computing,
they do not suit our requirements. For example, Java GCs im-
plement compaction but may sometimes perform unbounded
stop-the-world operations in certain GC stages, see also Sec-
tion 6. Also, these GCs use multi-threading which is not
available in the deterministic context of blockchain execu-
tion.

Lacking an existing solution, we have designed a new
GC that is tailored to a Wasm-based blockchain. Inspired by
the Shenandoah GC [11], our GC also engages incremental
snapshot-at-the-beginning marking, incremental partitioned
evacuation-compaction, and incremental pointer updates
based on the Brooks forwarding pointers [6]. It additionally
avoids any unbound stop-the-world operations and is tuned
to more conservative memory reclamation on the blockchain.

We implemented the GC for the programming language
Motoko [12] and evaluated it on the Internet Computer
blockchain [2].

In summary, we make the following contributions:

e The design of a Wasm-based garbage collector that is
optimized for a blockchain.

e The open-source implementation of this GC.

e Performance evaluation of the GC in comparison to
classical GCs.

The remainder of this paper is organized as follows: Sec-
tion 2 provides some background information about the
blockchain we build upon. Section 3 describes the GC design,
giving an overview before discussing the specific aspects.
Section 4 reports on the implementation aspects and tuning
parameters of the GC. Section 5 shows experimental results
when using the GC and comparing it to other GCs. Section
6 discusses related work. Section 7 concludes this paper.

2 Background

The GC presented in this paper manages the memory of the
Motoko programming language that runs on the Internet
Computer blockchain. We briefly provide some background
information to support the subsequent explanation of the
GC design.

The Internet Computer (IC) [2] is a compute blockchain
whose software components, called canisters, follow the
Actor Model [16] and are implemented in Wasm. The com-
munication across canisters as well as external input/output
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with the canisters happens exclusively through message pass-
ing (not shared state). A message sent to a canister is asyn-
chronously received by that canister which can then trigger
Wasm code to run for that message. The code may change
the canister state and send messages asynchronously, e.g. a
result to the sending canister, messages to other canisters,
or even messages to itself. The execution implemented on
message reception constitutes a transaction that runs deter-
ministically, atomically (may either succeed or roll back), in
isolation (sequential message processing inside a canister),
and with a maximum limit of computation steps. The IC mea-
sures costs in terms of both memory usage (Wasm allocated
memory size) and synthetic counting of the executed instruc-
tions. According to the concept of orthogonal persistence
[3], canisters run conceptually perpetually, meaning that
their last memory state is automatically preserved on the
blockchain. Canisters can also be upgraded to new program
versions requiring state migration between upgrades.

Motoko [12] is a relatively young programming language
designed to optimally support the IC runtime model and thus
ease development on this blockchain. Besides a blend of im-
perative, functional, object-oriented, and asynchronous pro-
gramming concepts, the language features less mainstream
concepts, such as structural typing, orthogonal persistence,
and the Actor Model. The latter two are tailored to the Inter-
net Computer blockchain. Motoko rigorously ensures type
and memory safety, by relying on a garbage collector for
automatic memory reclamation.

3 GC Design

Incremental and compacting collection are key design prop-
erties of our GC that is tailored to the blockchain.

The GC distributes its workload across multiple incre-
ments where the mutator is paused for only a limited amount
of Wasm instructions. This is a hard limit, meaning it does
not depend on the heap size, stack size, GC phase, and mem-
ory constellation. As a result, the GC runs concurrently to the
mutator with deterministic interleaving, allowing scalable
heap usage. Parallelism is not supported by the blockchain as
it may imply non-deterministic differences between the repli-
cated execution. Each GC work fits within the instruction-
limited IC transactions.

Similar to the Shenandoah GC [11], our incremental GC
organizes the heap in equally-sized partitions and selects
high-garbage partitions for compaction by using incremental
evacuation. We were able to adopt most of the Shenandoah
design except that we eliminate remaining unbounded stop-
the-world GC phases and insert an extra updating phase.
We use the Brooks forwarding pointer technique [6], while
Shenandoah later changed to conditional-jump load barriers
[19]. The differences are discussed in Section 6.

In overall, the GC runs in three phases, all fully incremen-
tal:
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1. Marking: The GC performs full-heap incremental

marking with the snapshot-at-the-beginning algorithm.

2. Evacuation: The GC moves live objects in selected
partitions to new empty partitions. Accesses to relo-
cated objects are atomically redirected by the forward-
ing pointers.

3. Updating: The GC traverses the heap and updates
all pointers to relocated objects, before freeing the
memory of the evacuated partitions.

The GC phases and other design aspects are explained in
more detail in the subsequent sections.

3.1 Marking Phase

When a new GC run is scheduled, the incremental marking
phase is first initiated. This involves an incremental tri-color-
marking [18] based on the snapshot-at-the-beginning (SATB)
algorithm, operating on the entire heap (across partitions).
Full-heap marking has the advantage that it can also deal
with arbitrarily large cyclic garbage, even if it is spread over
multiple partitions. Applying a different, more progressive
marking scheme, such as incremental update, is difficult on
Wasm, as is explained in Section 3.8.

To realize SATB consistency, write barriers intercept muta-
tor pointer overwrites between the GC mark increments. The
barrier marks the old target of an overwritten pointer (dele-
tion barrier). Concurrent object allocations, i.e. new objects
created during a GC run, are always conservatively marked.
The marking phase is only initiated on an empty call stack,
which is the case at the end of an IC transaction. We discuss
this design choice in Section 3.8. Therefore, the marking
phase can start from a fixed set of global root pointers.

Our GC uses partition-associated mark bitmaps that are
temporarily allocated during a GC run. This proved to be
significantly more efficient than inlining the mark bit in the
object header, with a difference of 38% of the GC’s runtime
costs. We try to avoid running out of memory due to the
mark bitmap allocation by lowering the critical memory limit
for GC scheduling accordingly, cf. Section ??. The marking
phase additionally needs a mark stack that we implemented
as a growable linked table list in the heap that can be recycled
as garbage during the active GC run.

As a side activity, the marking phase also records the
amount of live data per partition. These statistics later serve
as a basis for deciding on selective evacuation.

3.2 Evacuation Phase

The GC prioritizes partitions with larger amounts of garbage
for evacuation using the statistics gathered by the marking
phase. Thereby, the GC also limits the amount of selected
partitions based on the available overall free memory space.
For efficiency, a partition is only elected for evacuation if it
contains more than a defined minimum amount of garbage.
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Once the selection step is done, the marked objects inside
the selected partitions are evacuated to other free partitions
and thereby compacted. Figure 1 visualizes how the live
objects of partitions A, B, and C are compacted into partition
D.

To allow incremental object moving and incremental up-
dating of pointers, each object carries redirection informa-
tion in its header, namely, a Brooks forwarding pointer [6].
Figure 2 illustrates the mechanism: For a non-moved object
(1), the forwarding pointer refers to the object itself, while
for moved objects (2), the forwarding pointer refers to the
new object location. The runtime system ensures that each
object access is redirected via this forwarding pointer. This
constitutes a very efficient version of a load barrier, only in-
volving an additional unconditional load instruction. Motoko
does not support reference equality checks, which would
otherwise also require forwarding pointer resolution.

The evacuated partitions are retained and whenever an
object is evacuated, the original location is forwarded to the
corresponding new object location. Therefore, the mutator
can continue to use old incoming pointers to evacuated ob-
jects. To avoid additional write barriers during evacuation,
an object is entirely copied without mutator interference.
Section 3.6 elaborates on how this complies to strict incre-
ment limits.

3.3 Updating Phase

All pointers to any moved objects have to be updated before
free space can be reclaimed. For this purpose, the GC per-
forms the third phase that traverses all reachable objects in
the entire heap and updates all pointers from live objects to
their forwarded addresses.
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As the mutator may perform concurrent pointer writes
behind the traversal frontier of the updating phase, a write
barrier catches the written pointer values and resolves them
to the corresponding forwarded locations. The same applies
to new object allocations that may contain old pointer values
in their initialized state, e.g. originating from the call stack.

The updating phase can only be completed when the call
stack is empty, since the GC does not (and cannot) access the
Wasm stack, similar to the start of the GC marking phase.

Once the updating phase is completed, all evacuated par-
titions are freed and can later be recycled for new object
allocations. At the same time, the GC also frees the mark
bitmaps stored in temporary partitions.

Unlike the Shenandoah GC, our GC does not postpone the
pointer updates to the marking phase of the next GC run, to
reduce the latency of memory reclamation. Otherwise, the
evacuated partitions would need to be retained until the end
of the next marking phase and there can be a longer pause
until the next GC run is scheduled.

3.4 Object Allocation

Object allocation is realized by bump allocation inside a se-
lected allocation partition. When the allocation partition’s
free space is insufficient for a new allocation, the free pointer
is moved to a new free partition which then becomes the
allocation partition. Large objects are handled specially, see
Section 3.5. Because of the required determinism on the
blockchain, there is no multi-threading, such that bump allo-
cation with a single free pointer is an efficient choice.

As mentioned, we need to handle mutator allocations
between the GC increments. We call these concurrent allo-
cations as they are time-multiplexed with the GC run. An
allocation barrier catches all newly created (and initialized)
objects and does the following:

e If the GC is in the marking phase, the new object is
marked (conservative incremental marking).

o If the GC is in the updating phase, the fields inside
the initialized object are inspected and potential old
pointers updated to the new forwarded location.

o The GC counts concurrent allocations to adapt its work
intensity to the allocation rate, see Section 3.7.

3.5 Large Objects

An object larger than a partition is deemed large and requires
special handling: A sufficient amount of contiguous free par-
titions is searched and reserved for such a large object. Large
objects are not moved by our GC. Once they become garbage,
having been left unmarked by the GC, their hosting parti-
tions are immediately freed. Partitions storing large objects
do not require a mark bitmap during the GC but use a single
mark bit inside the metadata of a partition. Both external and
internal fragmentation can occur for large objects which is
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an open design shortcoming of our GC. We therefore advise
programmers to carefully allocate such special objects.

3.6 Increment Limit

The GC maintains a synthetic deterministic clock by count-
ing work steps, such as marking an object, copying a word, or
updating a pointer. The clock serves for limiting the duration
of a GC increment. The GC increment is stopped whenever
the limit is reached, ceding control to the mutator until the
GC later resumes its work in a new increment. The clock is
calibrated to linearly correlate to the IC execution costs.

To also respect the limit on large objects, large arrays are
marked and updated in incremental slices. Other large ob-
jects, such as blobs, do not contain pointers in their payload.
The maximum uninterrupted amount of work in the GC
is moving an object, and since large objects stay in place,
this is limited by the copying costs of the memory of an
entire partition. With this design, the GC is incremental in
all phases and work steps, assuming a minimum bound on
the increment limit that depends on the partition size.

Currently, our GC does not provide a strict guarantee that
it can always reclaim free space in time. However, we adapt
GC work to the allocation rate, see Section 3.7, which accord-
ing to our experimental tests serves for a timely reclamation.

3.7 Adaptive GC Work

To reduce the reclamation latency when the mutator allo-
cates at a high rate during garbage collection, the GC imposes
an additional small GC increment per concurrent allocation.
However, instead of performing the increment immediately
on each allocation, the allocation-attributed increment time
is added to the next regularly scheduled GC increment. This
GC increment is performed at the end of the mutator code
of an executed message that constitutes a transaction.

In our runtime model, one cannot observe external effects
during the execution of a transaction (or message). Hence
postponing the allocation increments is equivalent to in-
terleaving them in a more fine-grained manner inside the
transaction. Therefore, even if the GC increment limit is ex-
tended at the execution level, it does not contravene the strict
incrementality needed for the blockchain: The programmers
have it under their control. If the extended GC increment
exceeds the transaction limit, there is too high allocation
work in that transaction, and the execution would equally
have crossed the execution limit had the small GC alloca-
tion increments been performed at each allocation. In other
words, the GC increment limit depends on the amount of
mutator allocations performed since the last GC increment
inside the same transaction, but remains independent of the
heap size or memory structure.

3.8 Root Set

A GC run is only started and finished when the call stack is
empty. This approach is chosen because of a Wasm security
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restriction that prevents the inspection of the native call
stack for the root set collection. In our case, this limitation is
not so decisive, since the call stack is empty at the end of each
transaction. Not having to scan the call stack even benefits
incrementality: Contrary to other GCs, e.g. the Shenandoah
GC, we only have a constant set of root pointers, and avoid
stop-the-world initialization and finalization in a simple way.
The downside of this approach is that the marking phase
must be conservative by retaining new allocations and using
SATB. A more progressive marking scheme, such as incre-
mental update, is not feasible if we want to switch GC phases
during the same transaction. When the GC switches from
the marking to the evacuation phase, we could have critical
pointers on the stack that lead to unmarked objects and we
could not detect those. An alternative would be to maintain
a separate custom shadow stack [4] for local pointers which
incurs performance overheads.

4 Implementation

Currently, the IC offers a 32-bit Wasm heap per canister as
the current Wasm standard is also still based on 32 bit. There
are plans to extend the heap to 64 bit in the future by using
the Wasmé64 extension. (Currently, programs can already use
special 64-bit memory that is explicitly accessed and cur-
rently not relevant for the GC.) The Motoko language imple-
mentation consists of a compiler implemented in OCaml and
a runtime system implemented in Rust, both targeting Wasm
as binary code. The GC is part of the pre-compiled runtime
system library that is linked into a Motoko-compiled user
program. The compiled size of the incremental GC (exclud-
ing the remaining logic of the runtime system) is moderate
with 2.3 KB.

4.1 Partitioned Memory

Our GC divides the memory address space in 32 MB logical
partitions. The physical allocation of partitions (as sequences
of 64 KB Wasm pages) happens lazily as more partitions
are needed. We measured that the granularity of 32 MB
is optimal in terms of both memory and execution costs,
although the differences are small compared to using 64
MB or 16 MB. Smaller partition sizes cause more frequent
handling of large objects, while larger partition sizes grow
the heap in coarser granularity and also increase the lower
bound for the configurable GC increment limit.

Figure 3 depicts the structure of the partitioned memory.
Some partitions store regular-sized objects (1, 2), while others
are free (7, 8) or host part of a large object (3, 4). One partition
serves as the current allocation target for the regular-sized
objects (5), and during garbage collection, mark bitmaps are
placed in dedicated partitions (6).

Each partition requires small metadata, such as a flag to
denote whether it is free, the size of allocated and marked
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Figure 3. Partitioned memory

space, a pointer to a possible mark bitmap, and a flag specify-
ing whether the partition belongs to a large object allocation.
Currently, with the 32-bit address space, this metadata is sim-
ply stored as a static partition table. When porting the system
to 64 bit, this metadata could be inlined to the partitions.

Allocating a new empty partition or finding sufficiently
large contiguous space for a large object involves a simple
linear search of the partition table. While this is efficient
enough in 32-bit space, one could introduce a free list of
partitions in the future 64-bit version.

4.2 Barrier Implementation
The incremental GC relies on three kinds of barriers:

e Load barrier: This resolves the forwarding pointer
and only involves a single additional load instruction
with an offset. Despite its lean implementation, we
measured a still noticeable overhead of about 12% on
average with regard to the instruction costs on the IC
blockchain.

Write barrier: This supports the SATB marking and
updating of old pointers. The measured runtime over-
head is relatively low with 2%.

Allocation barrier: This serves for updating the point-
ers inside the initialized objects and for counting the

concurrent allocations. The allocation barrier causes
around 3% runtime overhead.

Fortunately, the costs of the barriers are again compen-
sated by the main GC work, such that the incremental GC
eventually outperforms other stop-the-world GCs, as dis-
cussed in Section 5.

4.3 Scheduling

We schedule a new GC run whenever the heap size has
grown by more than 65% since the previous GC run or, if it
is the first GC run, when the heap has grown beyond the
partition size. When passing a critical memory limit of 3.25
GB on the 4 GB address space, we increase the GC frequency
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considerably, triggering a new GC run on every 1% growth.
This critical limit is set low enough to consider the size of
the mark bitmap that needs to be allocated during garbage
collection. Allocations during an active GC run account for
the growth threshold of the subsequent GC run.

A GC increment is bounded to 3,500,000 steps, as counted
by the synthetic clock in the GC. This corresponds to about
600 to 700 million instructions on the IC, where the trans-
action limit is currently around 4 billion instructions. Each
concurrent mutator allocation incurs a small GC increment
of 20 steps. In our runtime model, the small increments can
be simply added to the next regularly scheduled GC incre-
ment.

The compiler inserts GC scheduling calls at the end of a
message execution (when the call stack is also guaranteed to
be empty). These calls eventually perform a GC increment
unless the heap growth is too little since the last completion
of a GC run.

4.4 Evacuation Policy

Partitions with very little garbage, less than 15%, are never
evacuated. Moreover, we precompute the amount of extra
copy space that the evacuations need. If memory is scarce,
we limit the number of evacuated partitions by prioritizing
partitions with higher amounts of garbage. This prevents
the GC from running out of memory in the case of a high
load of evacuations.

5 Experimental Results

We measure the new GC on the IC blockchain. Cost metrics
are thereby different to classical computer systems: On the
IC, the dimensions of performance are the size of allocated
Wasm memory and the number of executed Wasm instruc-
tions. Moreover, adherence to the transaction instruction
limit is essential for scaling on the blockchain.

We compare our new GC, called the incremental GC in
this section, with three other available garbage collectors that
also have been implemented for Motoko and are available to
the users:

e Copying GC: A two-space copying garbage collector.

e Compacting GC: A mark-and-compact garbage col-
lector using the pointer threading technique [18].

e Generational GC: A two-generation compacting GC,
performing frequent collection of young objects.

In contrast to the new incremental GC, these three GCs
block the mutator for their entire work. Only the genera-
tional GC is able to reduce pauses when collecting the smaller
young generation.

5.1 Performance Measurements

We assembled a performance benchmark of several Motoko
programs, comprising user applications, a sample application
set, as well as some data structure tests. The latter perform
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Table 1. Performance benchmark overview

Benchmark Description Allocations

asset-storage Storing, listing and clearing 1 MB BLOBs, 70 rounds 281 MB

blobs Managing 64 KB blobs in a list (insert, read, delete, 2126 MB
repopulate)

btree-map Storing numbers in a b-tree (insert, read, delete, 397 MB
repopulate)

buffer Storing numbers in an array list (insert, read, delete, 123 MB
repopulate)

cancan Video-sharing platform, storing videos that are chunked 805 MB
into 1MB blobs

extendable-token Generic token exchange library, measuring 200 repeated 2 MB
transfers

game-of-life Sample application, game of life simulation with 10 318 MB
rounds using a 512 x 512 grid

graph Fully created graph (insert, read, delete, repopulate) 275 MB

imperative-rb-tree Storing numbers in a mutable red-black tree (insert, 148 MB
read, delete, repopulate)

linked-list Storing numbers in a linear linked list (insert, read, 413 MB
delete, repopulate)

qr-code QR code generator, seeded pseudo-randomized, 3 920 MB
rounds

random-maze Sample application, maze generation, 25 rounds with 10, 27 MB
100 and 200 cells, seeded pseudo-randomized

rb-tree Storing numbers in a functional implementation of a 920 MB
red-black tree (insert, read, delete, repopulate)

reversi Sample application, reversi game, 30 iterations 2MB

scalable-buffer Multi-level array list used for storing numbers (insert, 145 MB
read, delete, repopulate)

sha256 Computing sha256 hashes on 64KB data, 10 iterations 1290 MB

trie-map Storing numbers in a functional implementation of a trie 1026 MB
data structure (insert, read, delete, repopulate)

a series of insertions, reads, and deletions, including a sce-
nario that clears and repopulates the structure. Table 1 lists
the different programs of our GC performance benchmark,
together with a brief description, and the total amount of
allocated memory without garbage collection.

Some smaller-sized benchmark cases do not trigger the GC,
e.g. 'extendable-token’ and 'reversi’. We included these cases
in the benchmark to also measure the runtime overheads of
barriers and instrumented code in simple cases.

The benchmark is run on a local replicated runtime envi-
ronment by using the IC-custom runtime tool called *dfx’,
version 0.13.1. Due to the deterministic execution property of
the blockchain, all runtime properties and measured results
are identical to the production IC environment.

5.1.1 Maximum GC Pause. An important property of our
GC is the incrementality, which is reflected by the maximum
GC pause. Figure 4 shows the number of Wasm instructions
of the longest GC work per transaction, measured for each
benchmark case and for each of the four GCs. The horizontal
line indicates the intended pause limit for the new incremen-
tal GC of 700 million Wasm instructions. While most cases
are uncritical with regard to GC pauses, the simple blocking
GCs (compacting GC and copying GC) suffer from consider-
ably long pauses in certain scenarios, consuming up to 1.19
billion Wasm instructions. As for our new GC, pauses are
only extended beyond the base limit if the mutator entails a
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Table 2. Comparison of the GC pauses

GC Maximum Pause Average Pause
(million Wasm instructions) (million Wasm instructions)
Incremental GC 712 15
Generational GC 1190 27
Compacting GC 8410 67
Copying GC 5900 60
Table 3. GC performance comparison
GC | Total runtime GC throughput Allocated Wasm
(billion Wasm (mutator utilization) memory
instructions)
Incremental GC 18.5 79.7% 296 MB
Generational GC 19.1 79.0% 191 MB
Compacting GC 22.0 75.0% 188 MB
Copying GC 20.5 77.9% 271 MB

lot of concurrent allocations within a blockchain transaction,
cf. Section 3.7.

Table 2 summarizes the maximum and average duration
of GC pauses in million Wasm instructions, as measured
across all performance benchmark cases. In situations of
small program heaps, the GC can run fast, such that the
average is clearly shorter than the worst case of the longest
pause. As can be seen, the new incremental GC imposes
shorter pauses with regard to both the maximum and average
duration.

5.1.2 Runtime Costs. The number of executed Wasm in-
structions represents the execution costs of the programs
on the IC. The second column of Table 3 compares the aver-
age runtime costs (mutator and GC work) in billion Wasm
instructions for the different GCs in the performance bench-
mark. Although performance is not a primary design goal of
our new GC, it even offers the most economic execution on
average. Compared to the copying GC, we save around 10%
of the instructions. This is primarily because the new GC
performs selective compaction of high-garbage partitions,
while the copying GC moves the entire live set of the heap on
each run. The runtime improvement is less significant when
compared to the generational GC (a 3% saving), as the latter
is optimized for faster execution by primarily concentrating
on the small young generation.

Figure 5 details the runtime costs for the different bench-
mark cases, also in the number of Wasm instructions. The
new GC’s selective evacuation mechanism pays off in more
coarse-grained cases of ’blob’ and ’cancan’ that deal with
larger objects. Moreover, examples that fit well for the gen-
erational GC, also profit during the incremental GC, e.g.
‘trie-map’ and 'imperative-rb-tree’. However, there also exist
other cases where the new incremental GC degrades the run-
time performance, such as for ’scalable-buffer’ and ’sha256’,
where the barrier overheads become noticeable.
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5.1.3 GC Throughput. Another perspective on the GC
efficiency can be obtained by measuring the GC throughput,
also called the mutator utilization, being the fraction of the
mutator execution costs to the total program execution costs.
The results are listed in the third column of Table 3. With a
slightly higher mutator utilization of 0.7% to 4.7%, our new
incremental GC causes less disruptions on the mutator.

5.1.4 Allocated Memory. The IC uses the allocated Wasm
memory size of a program (canister) as a metric of cost cal-
culation. The last column of Table 3 summarizes the average
allocated memory size of the GCs for the performance bench-
mark. We additionally measured the memory size without
garbage collection, reflecting the artificial case where objects
would never be freed.

The memory footprint of the incremental GC is clearly
higher than for the other GCs. While the difference to the
copying GC is only 9% on average, the memory allocation
is 57% higher than the generational and compacting GC.
This is due to the fact that the incremental and copying GC
share the property of copying alive objects to free space
during compaction. The incremental GC requires additional
storage for the forwarding pointer in each object header and
allocates Wasm memory in partition granularities. However,
when memory space is becoming short, the incremental GC
limits the required copy space, cf. Section 4.4. Moreover,
incremental GC avoids evacuation of low-garbage partitions.
In our incremental GC, we tuned the garbage threshold for
the partition evacuation to 15% as this minimizes the Wasm
allocated memory size.

5.2 Scalability Measurements

An important property of our new GC is to offer scalable
memory usage, as the GC is able to limit the amount of its
work per blockchain transaction, such that they can succeed.

To verify the scalability, we created a different benchmark
set, with a subset of the programs of the previous bench-
mark that can scale in memory size. More specifically, we
concentrated on the data structure scenarios, by issuing con-
tinuous insertions until hitting a limit, i.e. running out of
memory or instruction limit of the blockchain transaction.
The insertions do not only add live objects but also create
garbage arising from temporary computational objects or
dynamic data structure reorganization on growth.

Table 4 lists the programs in the GC scalability benchmark.

5.2.1 Allocation Limit. In a first measurement, we deter-
mine the maximum number of values that can be inserted
into the different data structures. While the ’blob’ program
inserts 64 KB values into an array list, the other cases pop-
ulate very small 32-bit numbers to the data structures. The
average results are summarized in the second column of Ta-
ble 5 with the detailed results shown on a logarithmic scale in
Figure 6. We also include the artificial runtime configuration
with disabled garbage collection ("No GC").
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Figure 5. Total Wasm instructions executed per benchmark case

As intended by the GC design, the new incremental GC
scales substantially higher, by 2.5x on average, when com-
pared to the other GCs or having no collection at all. The
other GCs all hit the instruction limit of the blockchain trans-
action, when trying to scale in memory size, except for the
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’blob’ case. Due to the two-space design, the copying GC
can only scale up to 2 GB live data and therefore runs out of
memory during the ’blob’ case. Of course, when disabling
the collector, garbage cannot be recycled, so memory is ex-
hausted sooner than with the incremental GC.
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Figure 6. Maximum insertions per data structure, logarithmic scale

Table 4. Scalability benchmark overview

Benchmark Description

blobs Inserting 64 KB blobs in a list

btree-map Inserting numbers in a b-tree

imperative-rb-tree Inserting numbers in a mutable red-black tree

linked-list Inserting numbers in a linear linked list

rb-tree Inserting numbers in a functional implementation of a red-black tree

scalable-buffer Inserting numbers in a multi-level array list

trie-map Inserting numbers in a functional implementation of a trie data structure

Table 5. GC scalability comparison
GC Allocation limit Maximum usable
(million insertions) heap size

Incremental GC 149 3.8GB
Generational GC 33 0.90 GB
Compacting GC 37 0.87 GB
Copying GC 47 0.72 GB
No GC 47 4.0 GB

5.2.2 Maximum Heap Size. We also like to show that
the new GC, unlike the other classical GCs, enables a pro-
gram to use the available memory capacity. For this purpose,
we remeasure the final heap size on the scalability bench-
mark, i.e. the program size when the benchmark case hits
the limit (memory limit or instruction limits). The results are
summarized in the last column of Table 5. As expected, the
new incremental GC allows the heap to scale up close to the
maximum available 4 GB in 32-bit space, with some reserve
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needed for the GC runtime structures, the mark stack and
mark bitmaps.

6 Related Work

The Shenandoah GC [11] for OpenJDK served as an inspi-
ration for our GC design. It is also a partitioned evacuation-
compacting GC that is based on full-heap incremental SATB
marking. We deliberately choose a different design in the fol-
lowing regards: Our GC guarantees a strict limit on the GC
increments for a given rate of mutator allocations. There are
no stop-the-world situations like in Shenandoah where the
GC blocks for an unbounded amount of time when initiat-
ing or finalizing the marking phase, or when defragmenting
large objects that span multiple partitions. For faster mem-
ory reclamation, we do not wait for the subsequent GC run
when freeing partitions, but perform an additional incremen-
tal updating phase. More memory-economic configurations
are preferred in our GC, such that partitions are already
evacuated if they contain at least 15% garbage instead of 60%
like in Shenandoah. Moreover, our GC targets Wasm for a
blockchain runtime, while Shenandoah runs in the JVM and
is optimized for classical computer architectures. In 2019, the
Shenandoah GC implementation replaced the Brooks point-
ers by load barriers [19] with a conditional check. For our GC,
we measured superior runtime performance of 27.5% with
the Brooks pointer compared to a conditional load barrier.
ZGC [22] is another new high-scalable, mostly concurrent
garbage collector in OpenJDK that also works with parti-
tioned evacuation-compaction. It applies efficient hardware-
supported load barriers by storing color bits in the pointers
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and mapping the heap to multiple virtual memory addresses,
a different memory view for each color. Such hardware sup-
port is unfortunately not available in our blockchain virtual
machine (where we also still work on 32-bit address spaces).
Similar to Shenandoah, ZGC also contains stop-the-world
intervals to transition between GC phases, at the beginning
and the end of the marking phase, as well as after the selec-
tion of the evacuation candidates.

The current default GC of Java is still G1 [10] (also called
"garbage first") which also employs evacuation-compaction
by prioritizing high-garbage partitions like in our GC, Shenan-
doah, and ZGC. However, G1 does not implement forwarding
pointers or any other technique for incremental evacuation.
Instead, G1 performs stop-the-world evacuation and pointer
updates. To reduce the pauses for pointer updates, G1 main-
tains a remembered set per partition.

The Mature Object Space (MOS) [17], also known as the
train algorithm, is a real-time GC that is also based on par-
titioned evacuation compaction, however, with a specific
evacuation scheme, that allows partitioned heap marking
before reclaiming memory. The greatest advantage of MOS
in comparison to our GC, Shenandoah, and ZGC, is that
MOS does not need to mark the full heap and is still capable
of reclaiming inter-partition garbage. Even if the marking
phase is incremental, full heap marking will hit a scalability
limit at some point for very large heaps, because the GC
latency is not limited. At the same time, MOS imposes a
specific order on the evacuations of partitions: Unlike G1,
Shenandoah, ZGC, and our GC, MOS cannot optimize for
selective evacuation of high-garbage partitions.

Another approach in real-time garbage collection [5, 8] is
to avoid copying in most cases, using segregated free lists,
and only defragmenting when memory is scarce. While an
ideal real-time GC can guarantee even mutator utilization,
the overheads are significantly higher than in our case, e.g.
mutator utilization under 50% and space overheads of more
than 2x [5].

The recent Wasm GC proposal [15] aims to offer automatic
memory management directly by the Wasm engine, consid-
ering that several of the engines run in a browser which
already features a powerful GC for JavaScript, such as V8 GC
[9, 20], SpiderMonkey GC [13], and JavaScriptCore GC [21].
We cannot use Wasm GC for the following reasons: (1) Our
blockchain uses the Wasmtime engine [1] which does not
yet implement Wasm GC. (2) We require a deterministic and
strictly incremental GC and currently, there exists no Wasm
engine meeting these requirements. SpiderMonkey for ex-
ample only offers a partly incremental GC which blocks the
mutator for unbounded time in certain GC phases, e.g. dur-
ing compaction. (3) Our blockchain would need to snapshot
the host GC which could be expensive (if supported at all).
(4) In addition to determinism and incrementality, the GC
should ideally also compact the heap. This is for example
not the case for JavaScriptCore.
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AssemblyScript [4] implements an incremental mark-and-
sweep garbage collector that runs in Wasm. While com-
paction is not addressed by this GC, it also contains an un-
bounded pause when scanning the root set, in particular the
call stack. Moreover, AssemblyScript adds a space overhead
of two words per object, while our GC only adds one (the
forwarding pointer).

XLR [23] achieves high throughput and low latency by
combining reference counting with tracing collection, and
shifting from concurrent collection to incremental collection
with short pauses. To improve the poor performance of refer-
ence counting, pointer updates are collected and aggregated
over time to update the reference counters. Differently to
our GC, XLR does not update pointers incrementally but
pauses the mutator for evacuating a partition and updat-
ing the corresponding relevant incoming pointers by using
remembered sets.

7 Conclusion

Garbage collection for Wasm-based blockchains is a rela-
tively new area that poses different requirements compared
to traditional computing. We have identified both fragmenta-
tion and incrementality as key aspects a GC should address
in this context. As current mainstream GCs have a differ-
ent focus, we have designed a new GC that is tailored to
the Wasm-based blockchain. We implemented this GC for
the Motoko programming language and evaluated it on the
Internet Computer blockchain. Compared to classical GCs,
our customized GC performs better in terms of memory
scalability and runtime costs.

Availability

The presented GC is open source and available at: https:
//github.com/dfinity/motoko/pull/3837. The same applies to
the Motoko programming language and the Internet Com-
puter: https://internetcomputer.org. The GC benchmark suite
can be found at: https://github.com/luc-blaeser/gcbench.
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